Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sandra Mandolesi, ${ }^{\text {a }}$ Markus Schürmann, ${ }^{\text {b }}$ Hans Preut ${ }^{\text {b* }}$ and Terence Mitchell ${ }^{\text {b }}$

${ }^{\text {a }}$ Departamento de Quimica, Universidad Nacional del Sur, Avda. Alem 1253, 8000 Bahia Blaca, Argentina, and ${ }^{\mathbf{b}}$ Fachbereich Chemie, Universität Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany

Correspondence e-mail:
uch002@uxp1.hrz.uni-dortmund.de

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.004 \AA$
R factor $=0.027$
$w R$ factor $=0.063$
Data-to-parameter ratio $=25.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

A 1:1 adduct between bis(chlorodimethylstannyl)methane and hexamethylphosphoric acid triamide (HMPA)

In the title compound, $\left[\mathrm{Sn}_{2}\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{OP}$, the molecule lies on a mirror plane. The two pentacoordinated Sn atoms are part of a planar four-membered $-\mathrm{C}-\mathrm{Sn} \cdots \mathrm{Cl}-$ Sn - ring [$\mathrm{Sn}-\mathrm{C} 2.103$ (4) and 2.093 (4), $\mathrm{Sn}-\mathrm{Cl} 2.6333$ (11) and $\mathrm{Sn} \cdots \mathrm{Cl} 3.0369$ (12) \AA; $\mathrm{Sn}-\mathrm{C}-\mathrm{Sn} 115.8$ (2) ${ }^{\circ}{ }^{\circ}$.

Comment

Although bis(chlorodimethylstannyl)methane is a potential acceptor for either one or two monodentate ligands, only 1:1 adducts have so far been described. Two types of coordination are known: either both Sn atoms undergo bonding in such a way that the ligand bridges the two Sn atoms, as in the case of dimethyl sulfoxide (Mandolesi et al., 2001), both Sn atoms thus increasing their coordination number to five, or only one Sn atom undergoes coordination, as in the case of pyridine (Austin et al., 1987). In the title compound, HMPA bonds via O to give a structure completely analogous to the 1:1 adduct formed by the nitrogen donor pyridine. The ligand is complexed to one Sn atom site to form an almost perfect trigonal bipyramid. Cl1 does, however, interact with Sn 2 , the distance between these atoms being 3.0369 (12) \AA [pyridine: 3.009 (3) \AA], so that Sn 2 also has a distorted trigonal bipyramidal geometry (angle $\mathrm{Cl} 1-\mathrm{Sn} 2-\mathrm{Cl} 2176.98$ (4) ${ }^{\circ}$ [pyridine 176.3 (1) $\left.\left.{ }^{\circ}\right]\right)$. The $\mathrm{Sn}-\mathrm{Cl}$ bond lengths are very different $\{\operatorname{Sn} 2-\mathrm{Cl} 22.4403$ (12) \AA [pyridine 2.468 (2) \AA] and $\mathrm{Sn} 1-\mathrm{Cl} 1$ 2.6333 (11) \AA [pyridine 2.638 (3) \AA] $\}$. A further similarity between (I) and the pyridine adduct is the bond angle $\mathrm{O} 1-$ $\mathrm{Sn} 1-\mathrm{Cl} 1$ [176.27 (8) ${ }^{\circ}$ in (I); 175.4 (2) ${ }^{\circ}$ in pyridine]. Atoms $\mathrm{Sn} 1, \mathrm{Cl} 1, \mathrm{C} 3, \mathrm{Sn} 2, \mathrm{Cl} 2, \mathrm{O} 1, \mathrm{P} 1$ and N 1 lie on a mirror plane.

(I)

Experimental

$0.3 \mathrm{~g}(0.73 \mathrm{mmol})$ of 2,2-bis(chlorodimethylstannyl)propane (Austin et al., 1987; Karol et al., 1983) was dissolved in 2 ml of dry HMPA and the mixture stirred for 30 min . The solution was left overnight at $287-$ 288 K. The crystals were separated and dried very carefully to remove the solvent from their surface; m.p. 407-410 K, yield 56%.

Received 6 November 2002
Accepted 15 November 2002 Online 22 November 2002

Crystal data

$\left[\mathrm{Sn}_{2}\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{OP}$
$M_{r}=561.65$
Orthorhombic, Pnma
$a=12.7116$ (3) £
$b=12.4934$ (3) \AA
$c=14.3478$ (3) $\AA_{\circ^{3}}$
$V=2278.59(9) \AA^{3}$
$Z=4$
$D_{x}=1.637 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: none
14378 measured reflections
2727 independent reflections 1915 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.063$
$S=0.96$
2727 reflections
108 parameters

Mo $K \alpha$ radiation
Cell parameters from 14378 reflections
$\theta=3.2-27.5^{\circ}$
$\mu=2.50 \mathrm{~mm}^{-1}$
$T=291$ (1) K
Block, colourless
$0.19 \times 0.13 \times 0.13 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.031 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-16 \rightarrow 16 \\
& k=-16 \rightarrow 16 \\
& l=-18 \rightarrow 18
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Sn} 1-\mathrm{C} 3$	$2.103(4)$	$\mathrm{Sn} 2-\mathrm{C} 3$	$2.093(4)$
$\mathrm{Sn} 1-\mathrm{C} 1$	$2.104(4)$	$\mathrm{Sn} 2-\mathrm{Cl} 2$	$2.4403(12)$
$\mathrm{Sn} 1-\mathrm{O} 1$	$2.220(3)$	$\mathrm{Sn} 2-\mathrm{Cl} 1$	$3.0369(12)$
$\mathrm{Sn} 1-\mathrm{Cl} 1$	$2.6333(11)$		
$\mathrm{Sn} 2-\mathrm{C} 2$	$2.092(5)$		
$\mathrm{C} 3-\mathrm{Sn} 1-\mathrm{C} 1$	$119.27(15)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Cl} 1$	$176.27(8)$
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{C} 1$	$121.4(3)$	$\mathrm{C} 2-\mathrm{Sn} 2-\mathrm{C} 2$	$118.9(4)$
$\mathrm{C} 3-\mathrm{Sn} 1-\mathrm{O} 1$	$87.84(13)$	$\mathrm{C} 2-\mathrm{Sn} 2-\mathrm{C} 3$	$117.9(2)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{O} 1$	$89.81(12)$	$\mathrm{C} 2-\mathrm{Sn} 2-\mathrm{Cl} 2$	$97.17(14)$
$\mathrm{C} 3-\mathrm{Sn} 1-\mathrm{Cl} 1$	$88.42(12)$	$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{Cl} 2$	$98.54(12)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{Cl} 1$	$92.02(12)$	$\mathrm{Sn} 2-\mathrm{C} 3-\mathrm{Sn} 1$	$115.8(2)$

Symmetry code: (i) $x, \frac{1}{2}-y, z$.

H atoms were placed in calculated positions, with $U_{\text {iso }}$ constrained to be $1.5 U_{\text {eq }}$ of the carrier atom for the methyl- H and $1.2 U_{\text {eq }}$ for the remaining H atoms. The methyl groups were allowed to rotate but not to tip.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: $D E N Z O$ and $S C A L E P A C K$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97, PARST95 (Nardelli, 1995), PLATON (Spek, 2001).

Figure 1
View of the title compound, showing the labelling scheme. Displacement ellipsoids are shown at the 30% probability level. H atoms have been omitted. [Symmetry code: (i) $x, \frac{1}{2}-y, z$.]

SM thanks the Deutsche Akademische Austauschdienst DAAD for the award of a scholarship

References

Austin, M., Gebreyes, K., Kuivila, H. G., Swami, K. \& Zubieta, J. A. (1987). Organometallics, 6, 834-842.
Karol, T., Hutchinson, J., Hyde, J., Kuivila, H. G. \& Zubieta, J. (1983). Organometallics, 2, 106-114.
Mandolesi, S., Studentkowski, M., Preut, H. \& Mitchell, T. N. (2001). Acta Cryst. E57, m543-m544.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1 Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.

